

EPFL	Schedule Day 3 2024				
MORNING		AFTERNOON			
9:00	Introduction,	13.15	Group warm up		
	Reasoning + representing	14:30	Mini lessons, 2 cycles break		
10:30	break	14:45	Mini lessons, 1 cycle		
10:45	High impact lesson plans	15:15 16.00	Conclusion, prep for Day 4 END		
12:00	Reflective activity				
12:15	lunch break				
*					

Objectives

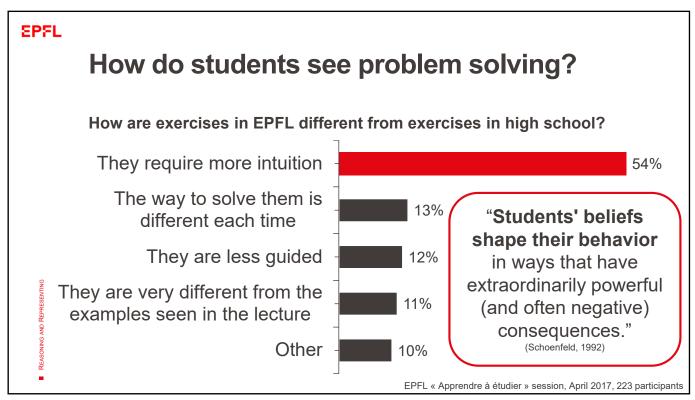
- Describe differences between expert and novice ways of thinking in your discipline
- Analyse problems using Polya's problem solving method and demonstrate it during in your teaching
- Identify patterns / systems of thinking that are typical to your field
- Create a lesson plan to improve representational competence

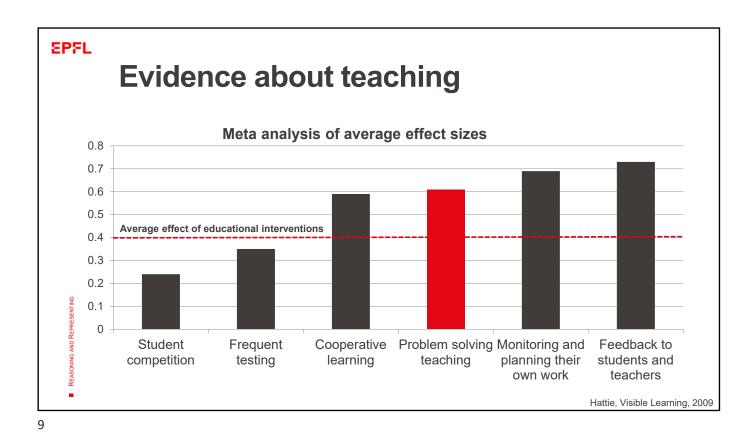
EPFL

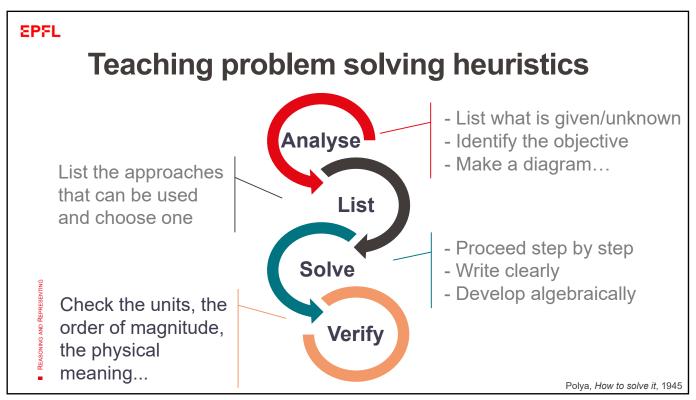
Novice - Expert

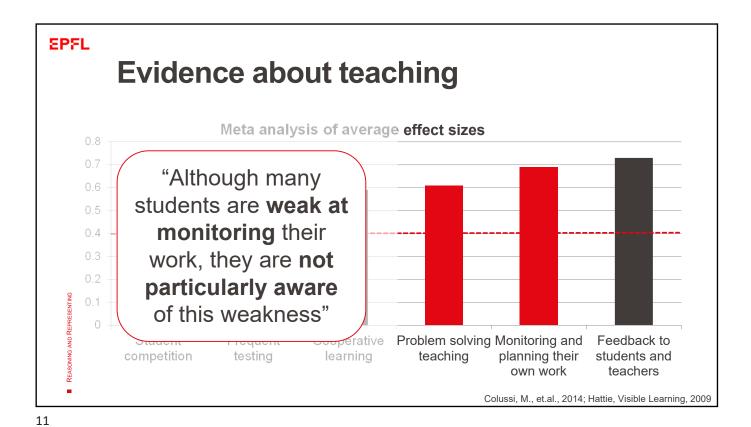
What differentiates a novice from an expert in your field?

- Write down three characteristics
- Pair up and compare with your neighbour
- Share


SONING AND REPRESENTING




Novice Expert


What do they know? How do they think?

Experts behave differently Reasoning (thinking) Problem solving

Teaching problem solving heuristics

Look back at your mini-lesson from Day 2 (exercise / problem solving activity):

- Are the problem solving heuristics from your field explicit?
- How did you encourage your students to monitor their work?

REASONING AND REPRESENTING

Experts behave differently

- Reasoning (thinking)
 - Problem solving
 - Identifying patterns

REASONING AND REPRES

EPFL

13

Experts identify patterns

ONING AND REPRES

Sabers, D. S., Cushing, K. S., & Berliner, D. C. (1991)

EPFL	Experts identify patterns					
	Group	n	Elements	Relationships	Function	
	Experts	10	13	15	18	
SNG S	Preservice teachers	26	12	8	8	,
REASONING AND REPRESENTING	Middle school students	20	12	7	8	
Hmelo-Silver, C. E., Marathe, S., & Liu, L. (2007). Fish swim, rocks sit, and lungs breathe: Expert-novice understanding of complex s				ex systems.		

15

EPFL

Systems thinking

- Thinking of the whole complex system as a unit
- More than the sum of the parts

EASONING AND REPRESENTING

Missing the forest for the trees

• What are some patterns in your field that novices might miss because they are focussing on the minutia?

REASONING AND REPRESEN

17

EPFL

Experts behave differently

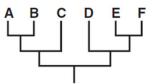
- Reasoning (thinking)
 - Problem solving
 - Identifying patterns
- Representing

SONING AND REPRESENTING

Common representations - 1

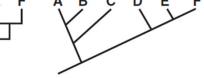
IGF1 v IGF1

- Look similar
- But represent two very different concepts


REASONING AND REPRES

19

EPFL


Common representations - 2

Nested Circles

Tree

Ladder

- Look different
- But represent the same concept

EASONING AND REPRESENT

Common representations - 3

Dalton 1803

Plum pudding model Thomson 1904

Rutherford 1911

Planetary model Bohr 1913

Quantum model Schrödinger 1926

Historical models

Increasing accuracy

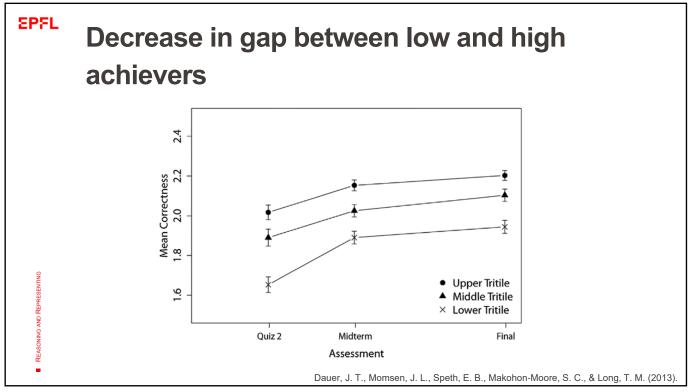
21

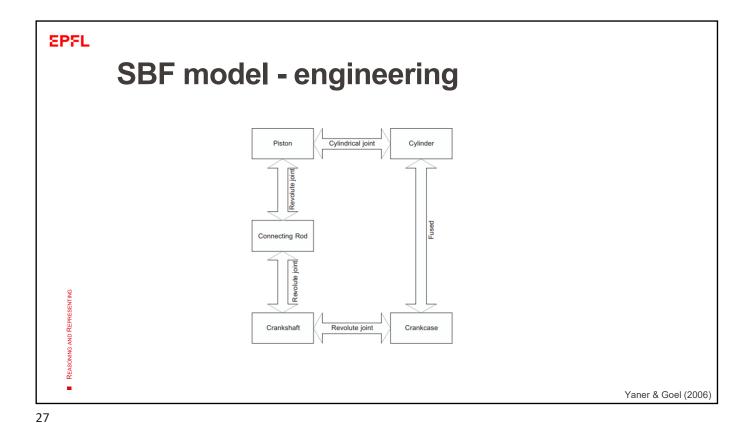
EPFL

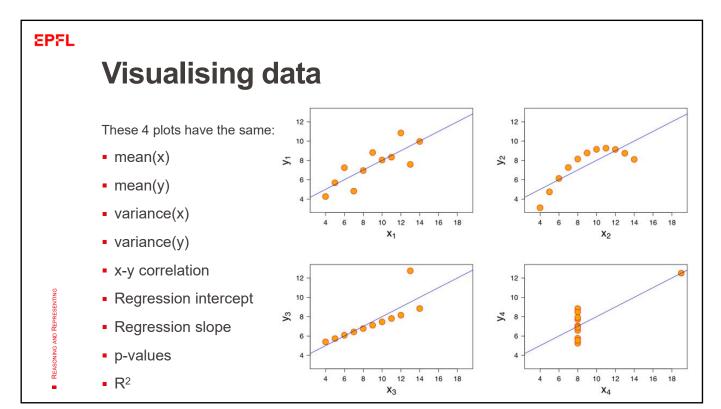
Representational competence

- Make the conventions explicit
- Use multiple types of representations explain contexts when one might be better than the other
- Explain difference between historical representations and current multiple representations
- Give students opportunity to interpret and construct

Representational competence


- What are some of the common representations in your field?
- What barriers could a novice face when using (interpreting and constructing) such representations?


REASONING AND REPRESENTIN


23

EPFL SBF model - biology for Galleles nucleotides mutate and Form g alleles phynotype (delection) made of normalvestebrae Dhenotype profein resultsin good fitness

EPFL	Experts identify patterns				
	Group	n	Elements	Relationships	Function
	Experts	10	13	15	18
2	Preservice teachers	26	12	8	8
REASONING AND REPRESENTING	Middle school students	20	12	7	8
Hmelo-Silver, C. E., Marathe, S., & Liu, L. (2007). Fish swim, rocks sit, and lungs breathe: Expert-novice under				i nderstanding of complex systems.	

References

- Colussi, M., Cuenin, A., Lee, T. H., & Machado, J. (2014) How good are students at thinking about their thinking?. https://www.epfl.ch/education/teaching/wpcontent/uploads/2019/07/How-good-are-students-at-thinking-about-their-thinking.pdf
- Dauer, J. T., Momsen, J. L., Speth, E. B., Makohon-Moore, S. C., & Long, T. M. (2013).
 Analyzing change in students' gene-to-evolution models in college-level introductory biology. *Journal of Research in Science Teaching*, 50(6), 639-659.
- Ericsson, K. (2006). An Introduction to The Cambridge Handbook of Expertise and Expert Performance: Its Development, Organization, and Content. In K. Ericsson, N. Charness, P. Feltovich, & R. Hoffman (Eds.), *The Cambridge Handbook of Expertise and Expert Performance* (Cambridge Handbooks in Psychology, pp. 3-20). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511816796.001
- Hattie, J. (2009). Visible Learning: A Synthesis of over 800 Meta-Analyses Relating to Achievement. London: Routledge. https://doi.org/10.4324/9780203887332.

References

- Hmelo-Silver, C. E., Marathe, S., & Liu, L. (2007). Fish swim, rocks sit, and lungs breathe: Expert-novice understanding of complex systems. The Journal of the Learning Sciences, 16(3), 307-331.
- Pólya, G. (1945). How to Solve It, 2nd edition, 1957. Princeton: Princeton University Press.
- Sabers, D. S., Cushing, K. S., & Berliner, D. C. (1991). Differences among teachers in a task characterized by simultaneity, multidimensional, and immediacy. *American educational* research journal, 28(1), 63-88.
- Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), *Handbook of research on* mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 334–370). Macmillan Publishing Co, Inc.
- Yaner, P. W., & Goel, A. K. (2006). From form to function: from SBF to DSSBF. In *Design* computing and cognition'06 (pp. 423-441). Springer Netherlands.

7 ways to increase the focus on student learning Degree of focus on learning

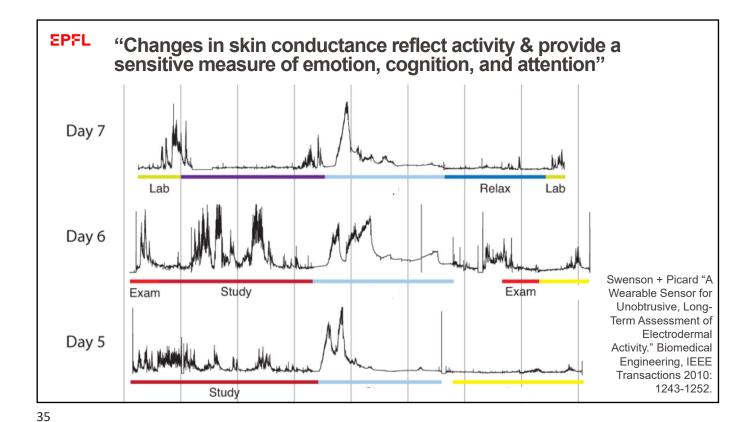
- 1. Connecting to students' existing knowledge
- 2. Involving students as active participants
- Promoting and harnessing student-student interactions
- 4. Enabling the structuring of knowledge
- 5. Integrating assessment in learning tasks
- 6. Supporting knowledge transfer and application
- 7. Developing students' reflective practice

0		•
Level 1	2	3
teacher performs and demonstrates the thinking	teacher encourages students to think, with clear guidelines	teacher creates context where students interact, decide and think

St-Pierre, Bédard, Lefebvre, Université de Sherbrooke, mars 2011

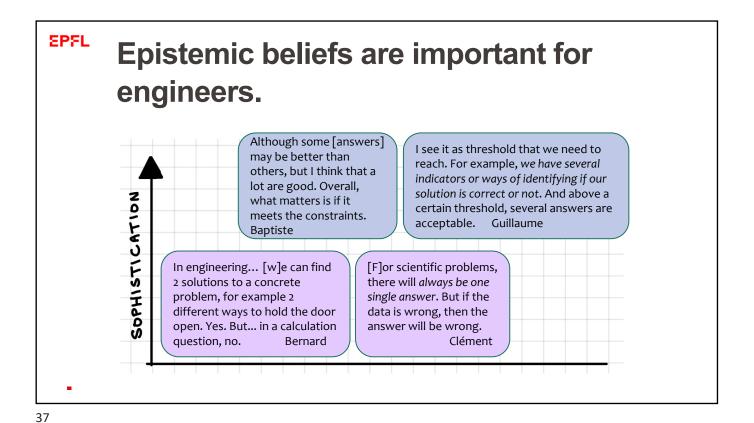
33

EPFL

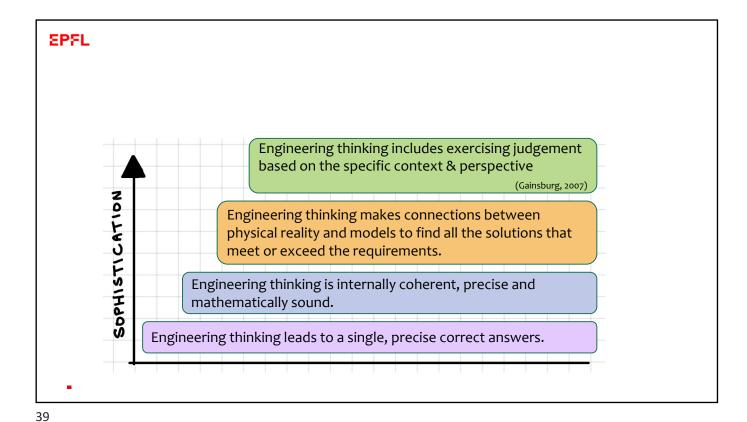

7 ways to increase the focus on student learning

Which aspects were least/most present in the sample lesson plan?

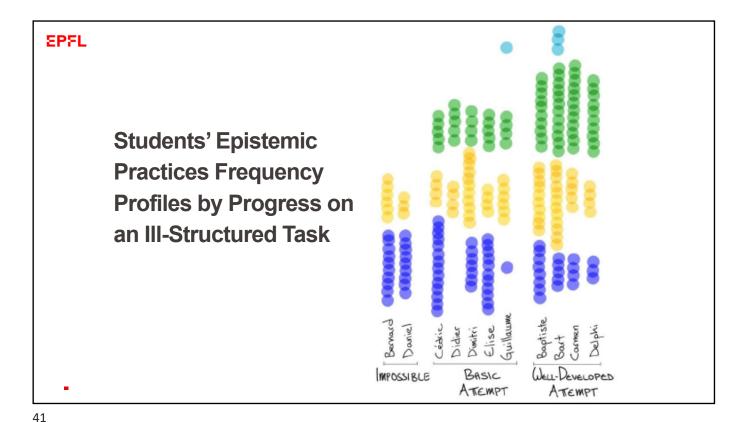
Which of the 7 ways were easiest to reinforce? The hardest?


-> Which of the 7 ways are missing from your mini lessons?

St-Pierre, Bédard, Lefebvre, Université de Sherbrooke, mars 201



Epistemic beliefs describe how we perceive the nature of knowledge and how it is acquired, proven and transferred.


- Where does knowledge come from?
- How do we know something is true?

References

- Gainsburg, J. (2015). Engineering Students' Epistemological Views on Mathematical Methods in Engineering. *Journal of Engineering Education*, 104(2), 139–166. https://doi.org/10.1002/jee.20073
- Isaac, S. (2021). Epistemic Practices: A framework for characterising engineering students' epistemic cognition. [PhD thesis]. Lancaster University.
- Marra, R. M., Palmer, B., & Litzinger, T. A. (2000). The effects of a first-year engineering design course on student intellectual development as measured by the Perry scheme. *Journal of Engineering Education (Washington)*, 89(1), 39–46.
- Perry, W. G. (1970). Forms of Intellectual and Ethical Development in the College Years: A Scheme. New York: Holt, Rinehart and Winston.

Homework

- 1. Preparation Assignment on Moodle
- 2. Prepare your mini lesson for Day 4
 - Choose some quantitative data and present it for GENERAL public audience.
 - Use visualization(s) and / or diagrams
 - Use the full LOAFS structure, per Day 4 lesson planning matrix
 - 10 minutes
 - · Include active learning

